ENGINEERS ACADEMY

Question Bank

1. The liquid limit and plastic limit of sample are 65% and 29% respectively. The percentage of the soil fraction with grain size finer than 0.002 mm is 24 . The activity ratio of the soil sample is
(a) 0.50
(b) 1.00
(c) 1.5
(d) 2.00
2. The given figure indicate the weights of different pycnometers:

The specific gravity of the solids is given by
(a) $\frac{\mathrm{W}_{2}}{\mathrm{~W}_{4}-\mathrm{W}_{2}}$
(b) $\frac{\mathrm{W}_{1}-\mathrm{W}_{2}}{\left(\mathrm{~W}_{3}-\mathrm{W}_{4}\right)-\left(\mathrm{W}_{2}-\mathrm{W}_{1}\right)}$
(c) $\frac{\mathrm{W}_{2}}{\mathrm{~W}_{3}-\mathrm{W}_{4}}$
(d) $\frac{\mathrm{W}_{2}-\mathrm{W}_{1}}{\left(\mathrm{~W}_{2}-\mathrm{W}_{1}\right)-\left(\mathrm{W}_{3}-\mathrm{W}_{4}\right)}$
3. A soil sample has a shrinkage limit of 10% and specific gravity of soil solids as 2.7 . The porosity of the soil at shrinkage limit is
(a) 21.2%
(b) 27%
(c) 73%
(d) 78.8%
4. In a wet soil mass, air occupies one-sixth of its volume and water occupies one-third of its volume. The void ratio of the soil is
(a) 0.25
(b) 0.5
(c) 1.00
(d) 1.50

Assertion (A): If the water table is very near to the subgrade of the road. It will ultimately cause cracking of the road surface.
Reason (R): The consistency of the soil will change from plastic to liquid state leading to its volumetric decrease.
(a) Both A and R are true and R is the correct explanation of A
(b) Both A and R are true but R is not a correct explanation of A
(c) A is true but R is false
(d) A is false but R is true
6. The standard plasticity chart to classify fine grained soils is shown in the given figure.

The area marked X represents
(a) silt of low plasticity
(b) clay of high plasticity
(c) organic soil of medium plasticity
(d) clay of intermediate plasticity
7. A soil sample is having a specific gravity of 2.60 and a void ratio of 0.78 . The water content in percentage required to fully saturate the soil at that void ratio would be
(a) 10
(b) 30
(c) 50
(d) 70
8. A dry soil has mass specific gravity of 1.35.If the specific gravity of solids is 2.7 , then the void ratio will be
(a) 0.5
(b) 1.0
(c) 1.5
(d) 2.0
9. A clay sample has a void ratio of 0.50 in dry state and specific gravity of solids $=2.70$. Its shrinkage limit will be
(a) 12%
(b) 13.5%
(c) 18.5%
(d) 22%
10. A soil has liquid limit of 60% plastic limit of 35% and shrinkage limit of 20% and it has a natural moisture content of 50%. The liquidity index of soil is
(a) 1.5
(b) 1.25
(c) 0.6
(d) 0.4
11. Consider the following statements in relation to the given sketch:

Volume (cc)		Weight (g)
0.2	Air	0
0.3	Water	0.3
0.5	Solids	0.1

1. Soil is partially saturated at degree of saturation $=60 \%$
2. Void ratio $=40 \%$
3. Water content $=30 \%$
4. Saturated unit weight $=1.5 \mathrm{~g} / \mathrm{cc}$

Which of these statements is/are correct?
(a) 1,2 and 3
(b) 1,3 and 4
(c) 2, 3 and 4
(d) 1,2 and 4
12. A soil has a liquid limit of 45% and lies above the A-line when plotted on a plasticity chart. The group symbol of the soil as per IS soil Classification is
(a) CH
(b) CI
(c) CL
(d) MI
13. The dry density of a soil is $1.5 \mathrm{~g} / \mathrm{cc}$. If the saturation water content were 50% then its saturated density and submerged density would, respectively, be
(a) $1.5 \mathrm{~g} / \mathrm{cc}$ and $1.0 \mathrm{~g} / \mathrm{cc}$
(b) $2.0 \mathrm{~g} / \mathrm{cc}$ and $1.0 \mathrm{~g} / \mathrm{cc}$
(c) $2.25 \mathrm{~g} / \mathrm{cc}$ and $1.25 \mathrm{~g} / \mathrm{cc}$
(d) $2.50 \mathrm{~g} / \mathrm{cc}$ and $1.50 \mathrm{~g} / \mathrm{cc}$
14. A fill having a volume of $1,50.000 \mathrm{cum}$ is to be constructed at a void ratio of 0.8 . The borrow pit soil has a void ratio of 1.4. The volume of soil required (in cubic meters) to be excavated from the borrow pit will be
(a) $1,87,500$
(b) $2,00,000$
(c) $2,10,000$
(d) $2,25,000$
15. The moisture content of a clayey soil is gradually decreased from a large value. What will be the correct sequence of the occurrence of the following limits?

1. Shrinkage limit
2. Plastic limit
3. Liquid limit

Select the correct answer using the codes given below:
(a) 1,2,3
(b) 1, 3, 2
(c) $3,2,1$
(d) $3,1,2$
16. The initial and final void ratios of a clay sample in a consolidation test are 1 and 0.5 , respectively. If initial thickness of the sample is 2.4 cm , then its final thickness will be
(a) 1.3 cm
(b) 1.8 cm
(c) 1.9 cm
(d) 2.2 cm
17. Given that Plasticity index (PI) of local soil $=15$ and PI of sand = zero, for a desired PI of 6 , the percentage of sand in the mix should be
(a) 70
(b) 60
(c) 40
(d) 30
18. A clayey soil has liquid limit $=\mathrm{w}_{\mathrm{L}}$; plastic limit $=\mathrm{w}_{\mathrm{p}}$ and natural moisture content $=\mathrm{w}$. The consistency index of the soil is given by
(a) $\frac{w_{L}-w}{w_{L}-w_{P}}$
(b) $\frac{\mathrm{w}_{\mathrm{L}}-\mathrm{w}_{\mathrm{p}}}{\mathrm{w}_{\mathrm{L}}-\mathrm{w}}$
(c) $\frac{\mathrm{w}_{\mathrm{P}}-\mathrm{w}}{\mathrm{w}_{\mathrm{L}}-\mathrm{w}_{\mathrm{P}}}$
(d) $\frac{w_{L}-w_{p}}{w_{P}-w}$
19. Consider the following statements:

1. 'Relative compaction' is not the same as 'relative density'.
2. Vibrofloatation is not effective in the case of highly cohesive soils.
3. 'Zero air void line' and 100% saturation line are not identical.
Which of these statements is/are correct?
(a) 1 and 2
(b) 1 and 3
(c) 2 and 3
(d) 3 alone

ENGINEERS ACADEMY

Codes: $\mathbf{A} \quad$ B \quad C \quad D
(a) $4 \quad 3 \quad 5 \quad 1$
(b) $5 \quad 4 \quad 3 \quad 1$
(c) $4 \quad 1 \quad 5 \quad 2$
(d) $5 \quad 1 \quad 3 \quad 2$
24. If an unconfined compressive strength of $4 \mathrm{~kg} /$ cm^{2} in the natural state of clay reduces by four times in the remoulded state, then its sensitivity will be
(a) 1
(b) 2
(c) 4
(d) 8
25. The value of porosity of a soil sample in which the total volume of soil grains is equal to twice the total volume of voids would be
(a) 75%
(b) 66.66%
(c) 50%
(d) 33.33%
26. A soil has a liquid limit of 40% and plasticity index of 20%. The plastic limit of the soil will be
(a) 20%
(b) 30%
(c) 40%
(d) 60%
27. A sample of saturated sand has a dry unit weight of $18 \mathrm{kN} / \mathrm{m}^{3}$ and a specific gravity of 2.7 . If density of water is $10 \mathrm{kN} / \mathrm{m}^{3}$, the void ratio of the soil sample will be
(a) 0.5
(b) 0.6
(c) 0.4
(d) 0.9

Common Data for Questions :28 \& 29
For constructing an embankment, the soil is transported from a borrow area using a truck which can carry $6 \mathrm{~m}^{3}$ of soil at a time. The details are as follows.

Property	Borrow area	Truck (loose)	Field (compacted)
Bulk density $(\mathrm{g} / \mathrm{cc})$	1.66	1.15	1.82
Water content $(\%)$	8	6	14

28. The quantity of soil to be excavated from the borrow pit, in m^{3} for a compacted earth fill of $100 \mathrm{~m}^{3}$ is
(a) 104 cum
(b) 146 cum
(c) 98 cum
(d) 87 cum
29. The number of truck loads of soil required to obtain $100 \mathrm{~m}^{3}$ of compacted earth fill
(a) 12 nos.
(b) 56 nos.
(c) 25 nos.
(d) 33 nos
30. When the product of rock weathering is not transported as sediment but remains in place, is called
(a) alluvial soil
(b) glacial soil
(c) residual soil
(d) aeoline soil
31. Aeolian soils are
(a) Residual soils
(b) Wind deposits
(c) Gravity deposits
(d) Water deposits
32. If the porosity of a soil sample is 20%, the void ratio is
(a) 0.20
(b) 0.80
(c) 1.00
(d) 0.25
33. Consistency Index for a clayey soil is [$\{\mathrm{LL}=$ Liquid Limit, PI = Plasticity Index, w = natural moisture content]
(a) $\frac{\mathrm{LL}-\mathrm{w}}{\mathrm{PI}}$
(b) $\frac{\mathrm{w}-\mathrm{PL}}{\mathrm{PI}}$
(c) $\mathrm{LL}-\mathrm{PL}$
(d) 0.5 w
34. If soil is dried beyond its shrinkage limit, it will show
(a) Large volume change
(b) Moderate volume change
(c) Low volume change
(d) No volume change
35. The toughness index of clayey soils is given by
(a) Plasticity index/Flow index
(b) liquid limit /Plastic limit
(c) Liquidity index /plastic limit
(d) Plastic limit/Liquidity index
36. A soil sample in its natural state has mass of 2.290 kg and a volume of $1.15 \times 10^{-3} \mathrm{~m}^{3}$. After being oven dried, the mass of the sample is $2.035 \mathrm{~kg} . \mathrm{G}_{\mathrm{s}}$ for soil is 2.68 . The void ratio of the natural soil is
(a) 0.40
(b) 0.45
(c) 0.55
(d) 0.53
37. Principle involved in the relationship between submerged unit weight and saturated weight of a soil is based on
(a) Equilibrium of floating bodies
(b) Archimedes' principle
(c) Stokes' law
(d) Darcy's law
38. A soil sample has a void ratio of 0.5 and its porosity will be close to
(a) 50%
(b) 66%
(c) 100%
(d) 33%
39. A borrow pit soil has a dry density of $17 \mathrm{kN} / \mathrm{m}^{3}$. How many cubic meters of this soil will be required to construct an embankment of $100 \mathrm{~m}^{3}$ volume with a dry density of $16 \mathrm{kN} / \mathrm{m}^{3}$.
(a) $94 \mathrm{~m}^{3}$
(b) $106 \mathrm{~m}^{3}$
(c) $100 \mathrm{~m}^{3}$
(d) $90 \mathrm{~m}^{3}$
40. The void ratio and specific gravity of a soil are 0.65 and 2.72 respectively. The degree of saturation (in percent) corresponding to water content of 20% is
(a) 65.3
(b) 20.9
(c) 83.7
(d) 54.4
41. A dry soil sample has equal amounts of solids and voids by volume. It void ratio and porosity will be

Void ratio	Porosity (\%)
(a) 1.0	100%
(b) 0.5	50%
(c) 0.5	100%
(d) 1.0	50%

42. The plasticity index and the percentage of grain size finer than 2 microns of a clay sample are 25 and 15 , respectively. Its activity ratio is
(a) 2.5
(b) 1.67
(c) 1.0
(d) 0.6
43. A soil sample having a void ratio of 1.3 , water content of 50% and a specific gravity of 2.60 , is in a state of
(a) partial saturation
(b) full saturation
(c) over saturation
(d) under saturation
44. The natural void ratio of a sand sample is 0.6 and its density index is 0.6 . If its void ratio in the loosest state is 0.9 , then the void ratio in the densest state will be
(a) 0.2
(b) 0.3
(c) 0.4
(d) 0.5
45. Which one of the following correctly represents the dry unit weight of a soil sample which has a bulk unit weight of γ_{t} at a moisture content of w\%?
(a) $\frac{w \gamma_{t}}{100}$
(b) $\gamma_{t}\left(1+\frac{\mathrm{w}}{100}\right)$
(c) $\gamma_{\mathrm{t}}\left(\frac{100}{100+\mathrm{w}}\right)$
(d) $\frac{\gamma_{t}(100-w)}{100}$
46. Assertion (\boldsymbol{A}): A soil is at its liquid limit if the consistency index of the soil is equal to zero.
Reason (\boldsymbol{R}): The consistency index of a soil is defined as ratio of (liquid limit minus the natural water content) to (natural water content minus plastic limit).
Codes given below :
(a) Both and R are true and R is the correct explanation of A
(b) Both and R are true but R is not a correct explanation of A
(c) A is true but R is false
(d) A is false but R is true
47. Consistency as applied to cohesive soils is an indicator of its
(a) density
(b) moisture content
(c) shear strength
(d) porosity
48. The ratio of saturated unit weight to dry unit weight of a soil is 1.25 . If the specific gravity of solids $\left(G_{s}\right)$ is 2.65 , the void ratio of the soil is
(a) 0.625
(b) 0.663
(c) 0.944
(d) 1.325
49. In the phase diagrams given the change due to initial state changing into final state is shown due to consolidation. Depth of soil layer undergoing consolidation is H ; e_{0} is initial void ratio; e_{r} is final void ratio; Δe is change in void ratio.

Indicate which of the following expressions gives settlement of the layer.
(a) $\mathrm{H} \log _{10}\left(\frac{\Delta \mathrm{e}}{1+\mathrm{e}_{0}}\right)$
(b) $\log _{10}\left(H \frac{\Delta \mathrm{e}}{1+\mathrm{e}_{0}}\right)$
(c) $\frac{\Delta \mathrm{e}}{1+\mathrm{e}_{0}}$
(d) $\mathrm{H} \frac{\Delta \mathrm{e}}{1+\mathrm{e}_{0}}$
C. Submerged density
3. $\frac{\gamma_{\mathrm{w}}(\mathrm{G}+\mathrm{e})}{(1+\mathrm{e})}$
D. Saturated density and select the correct answer using the codes given below the lists

List-I

A. Casagrande's apparatus
B. Hydrometer
C. Plate load test
D. Oedometer

List-II

1. Determination of grain size distribution
2. Consolidation characteristics
3. Determination of consistency limits
4. Determination of safe bearing capacity of soil
Codes: A B C D

(a) 1	3	2	4
(b) 1	3	4	2
(c) 3	1	2	4
(d) 3	1	4	2

56. Two soil sample A and B have porosities $n_{A}=40 \%$ and $n_{B}=60 \%$ respectively. What is the ratio of void ratios $\mathrm{e}_{\mathrm{A}}: \mathrm{e}_{\mathrm{B}}$?
(a) $2: 3$
(b) $3: 2$
(c) $4: 9$
(d) $9: 4$
57. Match List-I (Densities) with List-II (Expressions) and select the correct answer using the codes given below the lists:
(Symbols G, e, γ_{w} and S stand for specific gravity of soil grains, void ratio, unit weight of water and degree of saturation respectively)

List-I

A. Dry density
B. Moist density
2. $\frac{\gamma_{w} G}{(1+e)}$

List-II

1. $\frac{\gamma_{\mathrm{w}}(\mathrm{G}+\mathrm{Se})}{(1+\mathrm{e})}$

Codes: A B C D

(a) 2	1	4	3
(b) 2	3	4	1
(c) 4	1	2	3
(d) 4	3	2	1

58. What are the respective values of void ratio, porosity ratio and saturated density (in $\mathrm{kN} / \mathrm{m}^{3}$) for a soil sample which has saturation moisture content of 20% and specific gravity of grains as 2.6? (take density of water as $10 \mathrm{kN} / \mathrm{m}^{3}$)
(a) $0.52,1.08,18.07$
(b) $0.52,0.34,18.07$
(c) $0.77,1.08,16.64$
(d) $0.52,0.3,20.14$
59. Embankment fill is to be compacted at a density of $18 \mathrm{kN} / \mathrm{m}^{3}$. The soil of the borrow area is at a density of $15 \mathrm{kN} / \mathrm{m}^{3}$. What is the estimated number of trips of $6 \mathrm{~m}^{3}$ capacity truck for hauling the soil required for compacting $100 \mathrm{~m}^{3}$ fill of the embankment? (Assume that the soil in the borrow area and that in the embankment are at the same moisture content)
(a) 14
(b) 18
(c) 20
(d) 23
60. Well-graded dense saturated sands have high shear strength because
(a) such sands have a better grade (superior type of sand grains resulting in higher strength
(b) such sands have lower water content, which increases shear strength
(c) such sands have better interlocking of grains, higher inter-particle contacts and higher interparticle frictional resistance resulting in higher strength
(d) presence of water in such sands induces capillary pressure generating higher inter granular stresses, which generate apparent cohesion and hence higher shear strength.

ENGINEERS ACADEMY

Soil Mechanics

AINSMERS ANID EXPLANATIONS

1. Ans. (c)

Activity $=\frac{\text { Plasticity Index }}{\% \text { of clay fraction }}$
$=\frac{65-29}{24}=\frac{36}{24}=1.5>1.25$
2. Ans. (d)

Specific Gravity of solids is given by

$$
\mathrm{G}_{\mathrm{s}}=\frac{\mathrm{W}_{2}-\mathrm{W}_{1}}{\left(\mathrm{~W}_{2}-\mathrm{W}_{1}\right)-\left(\mathrm{W}_{3}-\mathrm{W}_{4}\right)}
$$

3. Ans. (a)

Shrinkage limit, $w_{s}=\frac{e}{G} \times 100$

$$
\therefore \quad \mathrm{e}=0.1 \times 2.7=0.27
$$

Porosity,

$$
\mathrm{n}=\frac{\mathrm{e}}{1+\mathrm{e}} \times 100=\frac{0.27}{1+0.27} \times 100=21.2 \%
$$

4. Ans. (c)

Void ratio, $\mathrm{e}=\frac{\mathrm{V}_{\mathrm{v}}}{\mathrm{V}_{\mathrm{s}}}$
$\mathrm{V}_{\mathrm{V}}=$ air void + water filled voids

$$
\begin{aligned}
& =\frac{1}{6} \mathrm{~V}+\frac{1}{3} \mathrm{~V}=\frac{\mathrm{V}}{2} ; \quad \mathrm{V}_{\mathrm{s}}=\mathrm{V}-\mathrm{V}_{\mathrm{v}}=\frac{\mathrm{V}}{2} \\
& \therefore \quad \mathrm{e}=\frac{\mathrm{V} / 2}{\mathrm{~V} / 2}=1.0
\end{aligned}
$$

5 Ans. (c)
The volume of soil increases from plastic limit to liquid limit. The cracking in soil is due to reduction in bearing capacity and consequent failure and heaving.
6. Ans. (d)

\% LL (Liquid Limit)	Plasticity
<35	Low
$35-50$	Intermediate
>50	High

Soils above A-line are clays and soils below Aline are silts and organic soils.
Equation of A-line is, PI $=0.73\left(\mathrm{w}_{\mathrm{L}}-20\right)$
7. Ans. (b)

Given, $S=100 \%$

$$
\therefore \quad \mathrm{w}=\frac{\mathrm{Se}}{\mathrm{G}}=\frac{100 \times 0.78}{2.60}=30 \%
$$

8. Ans. (b)
$\mathrm{G}_{\mathrm{m}}=\mathrm{G}_{\mathrm{s}}(1-\mathrm{n})=\frac{\mathrm{G}_{\mathrm{s}}}{1+\mathrm{e}}$
G_{m} is mass specific gravity
G_{m} is specific gravity of solids

$$
\therefore \quad \mathrm{e}=\frac{\mathrm{G}_{\mathrm{s}}}{\mathrm{G}_{\mathrm{m}}}-1 \quad \Rightarrow \mathrm{e}=\frac{2.7}{1.35}-1=1
$$

9. Ans. (c)

At shrinkage limit, soil is fully saturated.

$$
\therefore \quad \mathrm{w}_{\mathrm{s}}=\frac{\mathrm{e}}{\mathrm{G}} \times 100=\frac{0.5}{2.5} \times 100=18.5 \%
$$

10. Ans. (c)

Liquidity Index

$$
=\frac{\mathrm{w}-\mathrm{w}_{\mathrm{P}}}{\mathrm{w}_{\mathrm{L}}-\mathrm{w}_{\mathrm{P}}}=\frac{50-35}{60-35}=\frac{15}{25}=0.6
$$

Consistency Index $=1-0.6=0.4$
11. Ans. (b)

Degree of saturation $\mathrm{S}=\frac{\mathrm{V}_{\mathrm{w}}}{\mathrm{V}_{\mathrm{v}}} \times 100=60 \%$ partially saturated.

$$
=\frac{0.3}{0.2+0.3} \times 100=60 \%
$$

$>$ end Void ratio $\mathrm{e}=\frac{\mathrm{V}_{\mathrm{v}}}{\mathrm{V}_{\mathrm{s}}}=\frac{0.2+0.3}{0.5}=1$

$$
1 \times 100=100 \%
$$

Email:info@engineersacademy.org Website : www.engineersacademy.org
$>$ Water content

$$
\mathrm{w}=\frac{\mathrm{W}_{\mathrm{w}}}{\mathrm{~W}_{\mathrm{s}}}=\frac{0.3}{1.0}=30 \%
$$

> Saturated unit weight

$$
\gamma_{\mathrm{t}}=\frac{\mathrm{W}}{\mathrm{~V}}=\frac{1.0+0.3+0.2}{0.2+0.3+0.5}=1.5 \mathrm{~g} / \mathrm{cc}
$$

In case of fully saturated condition air voids will be filled by water.
12. Ans. (b)

Liquid limit 45% lies between 35% to 50% for intermediate plasticity. The soil above A line should be given symbol Cl .
13. Ans. (c)
$\gamma_{\mathrm{sat}}=\gamma_{\mathrm{d}}(1+\mathrm{w})=1.5 \times 1.5=2.25 \mathrm{~g} / \mathrm{cc}$
$\gamma_{\text {sub }}=\gamma_{\text {sat }}-\gamma_{\mathrm{w}}=2.25-1.0=1.25 \mathrm{~g} / \mathrm{cc}$
14. Ans. (b)

Volume of solids will remain same in fill and barrow pit

$$
\mathrm{V}_{\mathrm{s}}=\frac{\mathrm{V}}{1+\mathrm{e}} ;\left(\frac{\mathrm{V}}{1+\mathrm{e}}\right)_{\text {fill }}=\left(\frac{\mathrm{V}}{1+\mathrm{e}}\right)_{\text {borrow pit }}
$$

$$
\frac{150000}{1+0.8}=\frac{\mathrm{V}}{1+1.4} ; \quad \mathrm{V}=2,00,000 \mathrm{cum}
$$

15. Ans. (c)

Liquid limit $>$ Plastic limit $>$ Shrinkage limit
16. Ans. (b)

$$
\frac{\Delta \mathrm{H}}{\mathrm{H}}=\frac{\Delta \mathrm{e}}{1+\mathrm{e}_{0}} ; \quad \frac{\Delta \mathrm{H}}{2.4}=\frac{0.5-1}{1+1}
$$

$$
\begin{array}{r}
\Delta \mathrm{H}=-0.6 \mathrm{~cm} ; \quad \mathrm{H}_{\mathrm{f}}=\mathrm{H}+\Delta \mathrm{H} \\
=2.4-0.6=1.8 \mathrm{~cm}
\end{array}
$$

17. Ans. (b)

Assuming in mix, x part is sand and $(1-\mathrm{x})$ part is soil

$$
\begin{array}{r}
\text { PI of mix }=\frac{x(P)_{\text {sand }}+(1-x) P I_{\text {soil }}}{1} \\
6=x \times 0+(1-x) \times 15 \\
x=1-\frac{6}{15}=\frac{9}{15}=0.6=60 \%
\end{array}
$$

18. Ans. (a)
19. Ans. (a)
'Zero air void line ${ }^{1}$ and 100% saturation line are identical.
20. Ans. (b)
21. Ans. (b)
$\gamma_{\mathrm{d}}=\frac{\gamma_{\mathrm{t}}}{1+\mathrm{W}}=1500=\frac{2000}{1+\mathrm{W}}$

$$
\mathrm{w}=0.3333=33.33 \%
$$

22. Ans. (b)

Dry weight of sample $=1600 \times 10 \mathrm{r}^{-4}=0.16$ kg Weight of water in soil before mixing additional quantity $=0.18-0.16=0.02 \mathrm{~kg}$ After mixing water the total quantity of water $=0.02$ $+0.02=0.04 \mathrm{~kg}$ water

Thus, water content $=\frac{0.04}{0.16} \times 100=25 \%$
23. Ans. (d)

Degree of saturation,

$$
\mathrm{S}=\frac{\mathrm{V}_{\mathrm{w}}}{\mathrm{~V}_{\mathrm{v}}} \times 100=\frac{\mathrm{W}_{\mathrm{w}}}{\mathrm{~V}_{\mathrm{v}}} \times 100
$$

Density of water is $1 \mathrm{gm} / \mathrm{cc}$.
24. Ans. (c)

Sensitivity $=\frac{(\mathrm{UCS})_{\text {natural }}}{(\mathrm{UCS})_{\text {remoulded }}}=\frac{4}{(4 / 4)}=4$
25. Ans. (d)

Given, $\mathrm{V}_{\mathrm{s}}=2 \mathrm{~V}_{\mathrm{v}}$
Void ratio, $\mathrm{e}=\frac{\mathrm{V}_{\mathrm{v}}}{\mathrm{V}_{\mathrm{s}}}=0.5$
Porosity, $\mathrm{n}=\frac{\mathrm{e}}{1+\mathrm{e}}=\frac{0.5}{1.5}=\frac{1}{3}$ or 33.33%
26. Ans. (a)

Plastic limit, $\mathrm{w}_{\mathrm{p}}=\mathrm{w}_{\mathrm{L}}-\mathrm{PI}=40-20-20 \%$
27. Ans. (a)

$$
\gamma_{\mathrm{d}}=\frac{\mathrm{G}}{1+\mathrm{e}} \gamma_{\mathrm{w}}
$$

Email:info@engineersacademy.org Website : www.engineersacademy.org

$$
\Rightarrow \quad \mathrm{e}=\frac{\mathrm{G} \gamma_{\mathrm{w}}}{\gamma_{\mathrm{d}}}-1=\frac{2.7 \times 10}{18}=0.5
$$

28. Ans. (a)
29. Ans. (c)

$\gamma_{1}=1.66 \mathrm{gm} / \mathrm{cc} \quad \gamma_{2}=1.15 \mathrm{gm} / \mathrm{cc} \quad \gamma_{3}=1.82 \mathrm{gm} / \mathrm{cc}$
$\mathrm{w}_{1}=8 \%$
$\mathrm{w}_{2}=6 \%$
$\mathrm{w}_{3}=14 \%$
$\gamma_{d_{1}}$
V_{1}

$$
\begin{aligned}
& \gamma_{\mathrm{d}_{1}}=\frac{\gamma_{1}}{1+\mathrm{w}_{1}} \\
& \therefore \quad \gamma_{\mathrm{d}_{1}}=\frac{1.66}{1+0.08}=1.537 \mathrm{gm} / \mathrm{cc} \\
& \gamma_{\mathrm{d}_{2}}=\frac{.15}{1+0.06}=1.085 \mathrm{gm} / \mathrm{cc} \\
& \therefore \quad \gamma_{\mathrm{d}_{3}}=\frac{1.82}{1+0.14}=1.596 \mathrm{gm} / \mathrm{cc}
\end{aligned}
$$

To find volume of borrow pit $\left(\mathrm{V}_{1}\right)$ the following equation may be used.
$\frac{\mathrm{V}_{1}}{\mathrm{~V}_{3}}=\frac{\gamma_{\mathrm{d}_{3}}}{\gamma_{\mathrm{d}_{1}}} ; \quad \frac{\mathrm{V}_{1}}{100}=\frac{1.596}{1.537}$

$$
\mathrm{V}_{1}=103.84 \mathrm{~m}^{3} \text { say } 104 \mathrm{~m}^{3}
$$

To find number of trunk load :
$\frac{\mathrm{V}_{2}}{\mathrm{~V}_{3}}=\frac{\gamma_{\mathrm{d}_{3}}}{\gamma_{\mathrm{d}_{2}}} ; \frac{\mathrm{V}_{2}}{100}=\frac{1.596}{1.085}$
$\therefore \quad \mathrm{V}_{2}=147 \mathrm{~m}^{3}$
No. of truck loads

$$
=\frac{147}{6}=24.5 \operatorname{nos}
$$

Say 25 nos.
30. Ans. (c)
31. Ans. (b)
32. Ans. (d)

$$
\mathrm{e}=\frac{\mathrm{n}}{1-\mathrm{n}}=\frac{0.20}{1-0.2}=0.25
$$

33. Ans. (a)
34. Ans. (d)
35. Ans. (a)
36. Ans. (d)

Given

$$
\mathrm{G}=2.68
$$

Take $\quad \gamma_{w}=1000 \mathrm{Kg} / \mathrm{m}^{3}$
$\gamma=\frac{\mathrm{W}}{\mathrm{V}}=\frac{2.290}{1.15 \times 10^{-3}}=1991 \mathrm{Kg} / \mathrm{m}^{3}$
Water content,

$$
\begin{gathered}
\mathrm{w}=\frac{\mathrm{W}-\mathrm{W}_{\mathrm{d}}}{\mathrm{~W}_{\mathrm{d}}} \times 100=\frac{2.290-2.035}{2.035} \times 100 \\
=12.53 \% \\
\gamma_{\mathrm{d}}=\frac{\gamma}{1+\mathrm{W}}=\frac{1991}{1+0.1253}=1769.3 \mathrm{Kg} / \mathrm{m}^{3} \\
\gamma_{\mathrm{d}}=\frac{\gamma_{\mathrm{w}} \cdot \mathrm{G}}{1+\mathrm{e}} ; 1769.3=\frac{1000 \times 2.68}{1+\mathrm{e}} \\
\quad \mathrm{e}=0.52
\end{gathered}
$$

37. Ans. (b)
38. Ans. (d)
$\mathrm{n}=\frac{\mathrm{e}}{1+\mathrm{e}}=\frac{0.5}{1+0.5}=0.333=33.3 \%$
39. Ans. (a)

Borrow pit:
$\gamma_{\mathrm{d}_{1}}=17 \mathrm{kN} / \mathrm{m}^{3} ;$ Volume $=\mathrm{V}_{1}$
Embankment:
$\gamma_{\mathrm{d}_{2}}=16 \mathrm{kN} / \mathrm{m}^{3} ; \mathrm{V}_{2}=100 \mathrm{~m}^{3}$
Using the relationship,

$$
\begin{aligned}
\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}} & =\frac{\gamma_{\mathrm{d}_{2}}}{\gamma_{\mathrm{d}_{1}}} ; \frac{\mathrm{V}_{1}}{100}=\frac{16}{17} \\
\mathrm{~V}_{1} & =94.11 \mathrm{~m}^{3}
\end{aligned}
$$

40. Ans. (c)
$\mathrm{e}=\frac{\mathrm{wG}}{\mathrm{S}_{\mathrm{r}}} ; 0.65=\frac{0.20 \times 2.72}{\mathrm{~S}_{\mathrm{r}}}$

$$
S_{r}=0.837=83.7 \%
$$

41. Ans. (d)

Void ratio, $\quad \mathrm{e}=\frac{\mathrm{V}_{\mathrm{v}}}{\mathrm{V}_{\mathrm{s}}}=1$
Porosity,
$\mathrm{n}=\frac{\mathrm{e}}{1+\mathrm{e}} \times 100=\frac{1}{1+1} \times 100=50 \%$
42. Ans. (b)

Activity
Plasticity Index
$=\overline{\text { Percent of clay particles finer than } 2 \mu \mathrm{~m}}$
$=\frac{25}{15}=1.67$
As activity is more than 1.25 so it is active soil.
43. Ans. (b)

$$
\begin{aligned}
\mathrm{Gw} & =\mathrm{Se} \\
\mathrm{~S} & =\frac{260 \times 50}{1.3}=100 \%
\end{aligned}
$$

Therefore soil is fully saturated.

Remember	S $\leq 100 \%$ always
	w can be more than 100%
	e can be more than 1.0.

44. Ans. (c)

Density Index $=\frac{\mathrm{e}_{\max }-\mathrm{e}}{\mathrm{e}_{\max }-\mathrm{e}_{\min }}=0.6$
Void ratio in loosest state, $\mathrm{e}_{\max }=0.9$
Void ratio in natural state, $\mathrm{e}=0.6$

$$
\begin{aligned}
\therefore & 0.9-\mathrm{e}_{\min }=\frac{0.9-0.6}{0.6} \\
& \mathrm{e}_{\min }=0.9-0.5=0.4
\end{aligned}
$$

45. Ans. (c)

$$
\gamma_{\mathrm{d}}=\frac{\gamma_{\mathrm{t}}}{\left(1+\frac{\mathrm{w}}{100}\right)}=\frac{100 \gamma_{\mathrm{t}}}{(100+\mathrm{w})}
$$

46. Ans. (b)

Coefficient of curvature
$C_{c}=\frac{D_{30}^{2}}{D_{60} \times D_{10}} \Rightarrow D_{60}=\frac{D_{30}^{2}}{C_{c} \times D_{10}}$
Coefficient of uniformity,
$C_{u}=\frac{D_{30}^{2}}{C_{c} \times D_{10}^{2}}=\frac{D_{60}}{D_{10}}=\left(\frac{3}{0.6}\right)^{2} \times \frac{1}{1.4}=17.9$
As $1<\mathrm{C}_{\mathrm{c}}<3$ and $\mathrm{C}_{\mathrm{u}}>6$ so it is well graded sand.
47. Ans. (c)

Liquid limit is the water content corresponding to number of blows of 25 .
48. Ans. (c)

Relative density or Density index,

$$
\mathrm{I}_{\mathrm{D}}=\frac{\mathrm{e}_{\max }-\mathrm{e}}{\mathrm{e}_{\max }-\mathrm{e}_{\min }} \times 100=50 \%
$$

49. Ans. (d)

Consistency index $=\frac{w_{L}-w}{w_{L}-w_{p}}$

$$
I_{L}=\frac{w-w_{P}}{w_{L}-w_{P}}
$$

w can be grater than w_{p}
50. Ans. (c)

At saturated moisture content void ratio is
$\mathrm{e}=\frac{\mathrm{Gw}}{\mathrm{S}}=\frac{26 \times 25}{100}=0.65$
Relative density,
$D_{r}=\frac{e_{\text {max }}-e}{e_{\text {max }}-e_{\text {min }}}=\frac{0.95-0.65}{0.95-0.45}=0.6$

$$
\mathrm{D}_{\mathrm{r}}=60 \%
$$

51. Ans. (c)

For $\quad w=w_{L}$
Consistency index $=\frac{\mathrm{w}_{\mathrm{L}}-\mathrm{w}}{\mathrm{w}_{\mathrm{L}}-\mathrm{w}_{\mathrm{P}}}=0$
52. Ans. (c)

Consistency of soil refers to the resistance offered by it against forces that tend to deform or rupture the soil aggregate. It is related to strength.
53. Ans. (b)

Given $\frac{\gamma_{\text {sat }}}{\gamma_{\mathrm{d}}}=1.25, \mathrm{G}_{\mathrm{s}}=2.65$
$\gamma_{\text {sat }}=\frac{\gamma_{\mathrm{w}}\left(\mathrm{G}_{\mathrm{s}}+\mathrm{e}\right)}{1+\mathrm{e}} ; \gamma_{\mathrm{d}}=\frac{\gamma_{\mathrm{w}} \cdot \mathrm{G}_{\mathrm{s}}}{1+\mathrm{e}}$
$\frac{\gamma_{\text {sat }}}{\gamma_{\mathrm{d}}}=\frac{\mathrm{G}_{\mathrm{s}}+\mathrm{e}}{\mathrm{G}_{\mathrm{s}}} ; 1.25=\frac{2.65+\mathrm{e}}{2.65}$

$$
e=0.663
$$

54. Ans. (d)

Settlement, $\Delta H=H\left(\frac{e_{0}-e_{f}}{1+e_{0}}\right)=\frac{H \Delta e}{1+e_{0}}$
55. Ans. (d)
56. Ans. (c)

$$
\begin{aligned}
& \mathrm{e}_{\mathrm{A}}=\frac{\mathrm{n}_{\mathrm{A}}}{1-\mathrm{n}_{\mathrm{A}}}=\frac{0.4}{0.6}=\frac{2}{3} \\
& \mathrm{e}_{\mathrm{B}}=\frac{\mathrm{n}_{\mathrm{B}}}{1-\mathrm{n}_{\mathrm{B}}}=\frac{0.6}{0.4}=\frac{3}{2} \\
& \therefore \quad \frac{\mathrm{e}_{\mathrm{A}}}{\mathrm{e}_{\mathrm{B}}}=\frac{4}{9}
\end{aligned}
$$

57. Ans. (a)

Moist density,

$$
\gamma=\left(\frac{\mathrm{G}+\mathrm{Se}}{1+\mathrm{e}}\right) \gamma_{\mathrm{w}}
$$

For dry density put $\mathrm{S}=0$
For saturated density put $S=1$
Submerged density
$=$ saturated density - density of water
58. Ans. (d)

Given $w=20 \%, G=2.6, S=100 \%$

$$
\therefore \mathrm{e}=\frac{\mathrm{Gw}}{\mathrm{~S}}=\frac{2.6 \times 20}{100}=0.52 ; \mathrm{n}=\frac{\mathrm{e}}{1+\mathrm{e}}=0.34
$$

$$
\gamma_{\mathrm{sat}}=\left(\frac{\mathrm{G}+\mathrm{e}}{1+\mathrm{e}}\right) \gamma_{\mathrm{w}}=\frac{2.6+0.52}{1+0.52} \times 10
$$

$$
=20.53 \mathrm{kN} / \mathrm{m}^{3}
$$

If density of water is taken as $9.81 \mathrm{kN} / \mathrm{m}^{3}$

$$
\gamma_{\mathrm{sat}}=20.14 \mathrm{kN} / \mathrm{m}^{3}
$$

59. Ans. (c)

In problems of fill and borrow pit, the volume of soil solids shall be equated.

$$
V_{s}=\frac{V}{1+e}=\frac{V \gamma}{G(1+w) \gamma_{w}}
$$

As the moisture content of borrow area and that of embankment are same.

$$
\mathrm{V}_{1} \gamma_{1}=\mathrm{V}_{2} \gamma_{2}
$$

For 100 m fill at embankment, the volume required from borrow pit

$$
\mathrm{V}_{2}=\frac{100 \times 18}{15}=120 \mathrm{~m}^{3}
$$

Number of trips of truck $=\frac{120}{6}=20$
60. Ans. (c)

Email:info@engineersacademy.org Website : www.engineersacademy.org

